top of page

Peak Performance 

Egner, T. & Gruzelier, JH. (2003). Ecological validity of neurofeedback: modulation of slow wave EEG enhances musical performance. NeuroReport, 14(9) 1221-1224. Biofeedback-assisted modulation of electrocortical activity has been established to have intrinsic clinical benefits and has been shown to improve cognitive performance in healthy humans. In order to further investigate the pedagogic relevance of electroencephalograph (EEG) biofeedback (neurofeedback) for enhancing normal function, a series of investigations assessed the training’s impact on an ecologically valid real-life behavioral performance measure: music performance under stressful conditions in conservatoire students. In a pilot study, single-blind expert ratings documented improvements in musical performance in a student group that received training on attention and relaxation related neurofeedback protocols, and improvements were highly correlated with learning to progressively raise theta (5-8 Hz) over alpha (8-11 Hz) band amplitudes. These findings were replicated in a second experiment where an alpha/theta training group displayed significant performance enhancement not found with other neurofeedback training protocols or in alternative interventions, including the widely applied Alexander technique.

Gruzelier, JH. (2014). EEG-neurofeedback for optimizing performance. II: Creativity, the performing arts and ecological validity. Neurosci Biobehav Rev: Jul:44. 142-158. As a continuation of a review of evidence of the validity of cognitive/affective gains following neurofeedback in healthy participants, including correlations in support of the gains being mediated by feedback learning (Gruzelier, 2014a), the focus here is on the impact on creativity, especially in the performing arts including music, dance and acting. The majority of research involves alpha/theta (A/T), sensory-motor rhythm (SMR) and heart rate variability (HRV) protocols. There is evidence of reliable benefits from A/T training with advanced musicians especially for creative performance, and reliable benefits from both A/T and SMR training for novice music performance in adults and in a school study with children with impact on creativity, communication/presentation and technique. Making the SMR ratio training context ecologically relevant for actor’s enhanced creativity in stage performance, with added benefits from the more immersive training context. A/T and HRV training have benefitted dancers. The neurofeedback evidence adds to the rapidly accumulating validation of neurofeedback, while performing arts studies offer an opportunity for ecological validity in creativity research for both creative process and product.

Gruzelier, JH. (2014). EEG-neurofeedback for optimizing performance. I: A review of cognitive and affective outcome in healthy participants. Neurosci Biobehav Rev: Jul:44. 124-141. A re-emergence of research on EEG- neurofeedback followed controlled evidence of clinical benefits and validation of cognitive/affective gains in healthy participants including correlations in support of feedback learning mediating outcome. Controlled studies with healthy and elderly participants, which have increased exponentially, are reviewed including protocols from the clinic: sensory-motor rhythm, beta1 and alpha/theta ratios, down- training theta maxima, and from neuroscience: upper-alpha, theta, gamma, alpha desynchronization. Outcome gains include sustained attention, orienting and executive attention, the P300b, memory, spatial rotation, RT, complex psychomotor skills, implicit procedural memory, recognition memory, perceptual binding, intelligence, mood and well-being. Twenty-three of the controlled studies report neurofeedback learning indices along with beneficial outcomes, of which eight report correlations in support of a meditation link, results which will be supplemented by further creativity and the performing arts evidence in Part II. Validity evidence from optimal performance studies represents an advance for the neurofeedback field demonstrating that cross fertilization between clinical and optimal performance domains will be fruitful. Theoretical and methodological issues are outlined further in Part III.

Gruzelier, JH, Foks, M, Steffert, T, Chen, MJ. & Ros, T. (2013). Beneficial outcome from EEG-neurofeedback on creative music performance, attention and well-being in school children. Biol Psychol. 2013 Apr 25. pii: S0301- 0511(13)00099-9. doi: 10.1016/j.biopsycho.2013.04.005. [Epub ahead of print]. We earlier reported benefits for creativity in rehearsed music performance from alpha/theta (A/T) neurofeedback in conservatoire studies (Egner & Gruzelier, 2003) which were not found with SMR, Beta1, mental skills, aerobics or Alexander training, or in standby controls. Here the focus was the impact on novice music performance. A/T and SMR training were compared in 11- year old school children along with non-intervention controls with outcome measures not only of rehearsed music performance but also of creative improvisation, as well as sustained attention and phenomenology. Evidence of effective learning in the school setting was obtained for A/T and SMR/betA2 ratios. Preferential benefits from A/T for rehearsed music performance were replicated in children for technique and communication ratings. Benefits extended to creativity and communication ratings for creative improvisation which were shared with SMR training, disclosing an influence of SMR on unrehearsed music performance at a novice level with its greater cognitive demands. In a first application of A/T for improving sustained attention (TOVA), it was found to be more successful than SMR training, with a notable reduction in commission errors in the children, 15/33 of whom had attention indices in the ADHD range. Phenomenological reports were in favor of neurofeedback and well-being benefits. Implementing neurofeedback in the daily school setting proved feasible and holds pedagogic promise.

 

Hanslmayer, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing individual upper alpha by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology & Biofeedback, 30(1), 1- 10.The hypothesis was tested of whether neurofeedback training (NFT)—applied in order to increase upper alpha but decrease theta power—is capable of increasing cognitive performance. A mental rotation task was performed before and after upper alpha and theta NFT. Only those subjects who were able to increase their upper alpha power (responders) performed better on mental rotations after NFT. Training success (extent of NFT- induced increase in upper alpha power) was positively correlated with the improvement in cognitive performance. Furthermore, the EEG of NFT responders showed a significant increase in reference upper alpha power (i.e. in a time interval preceding mental rotation). This is in line with studies showing that increased upper alpha power in a prestimulus (reference) interval is related to good cognitive performance.

Hatfield, B, Haufler, A. (2009). Brain processes and neurofeedback for performance enhancement of precision motor behavior. NeuroImage, 5638 810-817. Based on a number of empirical investigations of cerebral cortical dynamics during precision aiming tasks (i.e. marksmanship) employing electroencephalography (EEG) refinement of cortical activity and attenuation of nonessential cortico-cortical communication with the motor planning regions of the brain results in superior performance. Employment of EEG neurofeedback during the aiming period of target shooting designed to reduce cortical activation resulted in improved performance in skilled marksmen. Such an effect implies that refinement of cortical activity is causally related to performance. Recently, we examined cerebral cortical dynamics during the stress of competitive target shooting and observed increased activation and cortico- cortical communication between non-motor and motor regions relative to a practice-alone condition. As predicted, this finding was associated with degradation of shooting performance. These findings imply that neurofeedback targeted to brain regions related to emotional responding may preserve the cortical dynamics associated with superior performance resulting in improved accuracy of precision aiming performance.

Kober, SE., Witte, M., Stangl, M., Vaijarnae, A., Neuper, C. & Wood, G. (2014). Shutting down sensory motor interference unblocks the networks for stimulus processing: An SMR neurofeedback training study. Clinical Neurophysiology:April 13. OBJECTIVE: In the present study, we investigated how the electrical activity in the sensorimotor cortex contributes to improved cognitive processing capabilities and how SMR (sensorimotor rhythm, 12-15Hz) neurofeedback training modulates it. Previous evidence indicates that higher levels of SMR activity reduce sensorimotor interference and thereby promote cognitive processing. METHODS: Participants were randomly assigned to two groups, one experimental (N=10) group receiving SMR neurofeedback training, in which they learned to voluntarily increase SMR, and one control group (N=10) receiving sham feedback. Multiple cognitive functions and electrophysiological correlates of cognitive processing were assessed before and after 10 neurofeedback training sessions. RESULTS: The experimental group but not the control group showed linear increases in SMR power over training runs, which was associated with behavioral improvements in memory and attentional performance. Additionally, increasing SMR led to a more salient stimulus processing as indicated by increased N1 and P3 event-related potential amplitudes after the training as compared to the pre-test. Finally, functional brain connectivity between motor areas and visual processing areas was reduced after SMR training indicating reduced sensorimotor interference. CONCLUSIONS: These results indicate that SMR neurofeedback improves stimulus processing capabilities and consequently leads to improvements in cognitive performance. SIGNIFICANCE: The present findings contribute to a better understanding of the mechanisms underlying SMR neurofeedback training and cognitive processing and implicate that SMR neurofeedback might be an effective cognitive training tool.

Kober, SE., Witte, M., Ninaus, M., Neuper, C. & Wood, G. (2013). Learning to modulate one’s own brain activity: The effect of spontaneous mental strategies. Frontiers in Human Neuroscience: Oct 18(7). 695. Using neurofeedback (NF), individuals can learn to modulate their own brain activity, in most cases electroencephalographic (EEG) rhythms. Although a large body of literature reports positive effects of NF training on behavior and cognitive functions, there are hardly any reports on how participants can successfully learn to gain control over their own brain activity. About one third of people fail to gain significant control over their brain signals even after repeated training sessions. The reasons for this failure are still largely unknown. In this context, we investigated the effects of spontaneous mental strategies on NF performance. Twenty healthy participants performed either a SMR (sensorimotor rhythm, 12-15 Hz) based or a Gamma (40-43 Hz) based NF training over ten sessions. After the first and the last training session, they were asked to write down which mental strategy they have used for self- regulating their EEG. After the first session, all participants reported the use of various types of mental strategies such as visual strategies, concentration, or relaxation. After the last NF training session, four participants of the SMR group reported to employ no specific strategy. These four participants showed linear improvements in NF performance over the ten training sessions. In contrast, participants still reporting the use of specific mental strategies in the last NF session showed no changes in SMR based NF performance over the ten sessions. This effect could not be observed in the Gamma group. The Gamma group showed no prominent changes in Gamma power over the NF training sessions, regardless of the mental strategies used. These results indicate that successful SMR based NF performance is associated with implicit learning mechanisms. Participants stating vivid reports on strategies to control their SMR probably overload cognitive resources, which might be counterproductive in terms of increasing SMR power.

Leach, J., Bulpin, K., Khan, S., Rass, A., ChammoropPremuzic, T., Nelson, C., Gruzelier, J. (2006). Controlled study of neurofeedback with novice singers. Society of Applied Neuroscience Conference presentation. Swansea. This is a pilot for a larger study with the aim of extending with novice musicians the findings of Egner and Gruzelier (2003) with elite musicians. They demonstrated professionally significant gains in artistry in music performance following alpha/theta training, but not with SMR or beta 1training, nor with aerobic exercise or mental skills/rehearsal training or the Alexander technique. Here are presented the results of 12 novice singers from London music colleges who were randomly assigned in equal numbers to ten sessions over two months of alpha/theta (A/T) training or SMR training. The study and analysis are ongoing. Results are presented for pre and post training assessment of music performance, attention, memory, mood and processes associated with creativity. There was evidence of significant within and between session learning in increasing the theta/alpha ratio (p<0.001 & p<0.047), but not in elevating the SMR/theta ratio. Despite the latter limitation semantic cued memory increased in the SMR group in support of Vernon et al (2003) (p<0.049, one tailed). Otherwise there were several suggestive differential effects advantaging the A/T group over the SMR group in music performance, creativity and attention, the latter in the direction of the results of Egner and Gruzelier (2004) though not reaching significance in their study. The Test of Variables of Attention (TOVA) showed an increase in sensitivity (d’) with A/T (p<0.04) and the reverse with SMR (Group x Time p<0.04), largely due to a reduction in omission errors with A/T and the opposite mean change in the SMR group (G x T, p<0.066). There was also a reduction in RT variability (p<0.012). Support for associations with creativity followed improvement in flexibility on the Guildford Alternative Uses Test (p<0.055), and the rule breaking subscale of the Adaptor/Innovator Test (p<0.022). The Baddeley Sentence Checking Test which involves working memory and reasoning was also advantaged (p<0.047) by A/T training. Finally blind lay evaluations from video clips of expressiveness, confidence and stage presence disclosed improvement following A/T (all p<0.001) in contrast to SMR training (G x T, all p<0.002).

Markovska-Simoska S, Pop-Jordanova N, Georgiev D. (2008). Simultaneous EEG and EMG biofeedback for peak performance in musicians. Prilozi, 29(1): 239-252. The aim of this study was to determine the effects of alpha neurofeedback and EMG biofeedback protocols for improvement of musical performance in violinists. The sample consisted of 12 music students (10 violinists and 2 Viola players) from the Faculty of Music, Skopje (3 males, mean age of 20 +/- 0 and 9 females, mean age = 20.89 +/-2.98). Six of them had a low alpha peak frequency (APF) (< 10 Hz), and six a high APF (> 10 Hz). The sample was randomized in two groups. The students from the experimental group participated in 20 sessions of biofeedback (alpha/EMG), combined with music practice, while the students from the control group did only music practice. Average absolute power, interhemispheric coherence in the alpha band, alpha peak frequency (APF), individual alpha band width (IABW), amount of alpha suppression (AAS) and surface forehead integrated EMG power (IEMG), as well as a score on musical performance and inventories measuring anxiety, were assessed. Alpha-EEG/EMG-biofeedback was associated with a significant increase in average alpha power, APF and IABW in all the participants and with decreases in IEMG only in high- APF musicians. The biofeedback training success was positively correlated with the alpha power, IcoH, APF, IABW and baseline level of APF and IABW. Alpha-EEG/EMG biofeedback is capable of increasing voluntary self- regulation and the quality of musical performance. The efficiency of biofeedback training depends on the baseline EEG alpha activity status, in particular the APF.

Sokhadze, E. (2012). Peak performance training using prefrontal EEG biofeedback. Biofeedback, 39, 7-15. The use of biofeedback training to self-regulate EEG patterns with the aim of recovering or optimizing function and behavioral performance is becoming increasingly established. The most reasonable approach is to learn to generate and maintain optimal brain wave patterns and produce associated peak performance states on demand. We report two studies where 12 sessions of prefrontal EEG feedback were used to improve performance in both clinical and nonclinical populations. Neurofeedback using Focus, Alertness, and 40 Hz (Neureka!) measures resulted in improved selective attention and other cognitive functions. We discuss other potential applications of neurofeedback in the areas of “under-pressure” activity, where peak performance state is an essential part of the job, such as in sports or the performing arts, as well as for human operators, such as air traffic dispatchers and military personnel on duty.

Witte, M., Kober, SE., Ninaus, M., Neuper, C. & Wood, G. (2013). Control beliefs can predict the ability to up- regulate sensorimotor rhythm during neurofeedback training. Frontiers in Human Neuroscience:15(7). 478. Technological progress in computer science and neuroimaging has resulted in many approaches that aim to detect brain states and translate them to an external output. Studies from the field of brain-computer interfaces (BCI) and neurofeedback (NF) have validated the coupling between brain signals and computer devices; however a cognitive model of the processes involved remains elusive. Psychological parameters usually play a moderate role in predicting the performance of BCI and NF users. The concept of a locus of control, i.e., whether one’s own action is determined by internal or external causes, may help to unravel inter-individual performance capacities. Here, we present data from 20 healthy participants who performed a feedback task based on EEG recordings of the sensorimotor rhythm (SMR). One group of 10 participants underwent 10 training sessions where the amplitude of the SMR was coupled to a vertical feedback bar. The other group of ten participants participated in the same task but relied onsham feedback. Our analysis revealed that a locus of control score focusing on control beliefs with regard to technology negatively correlated with the power of SMR. These preliminary results suggest that participants whose confidence in control over technical devices is high might consume additional cognitive resources. This higher effort in turn may interfere with brain states of relaxation as reflected in the SMR. As a consequence, one way to improve control over brain signals in NF paradigms may be to explicitly instruct users not to force mastery but instead to aim at a state of effortless relaxation.

bottom of page